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Abstract
A detailed analysis of the wave-mode structure in a bend and its incorporation
into a stable algorithm for calculation of the scattering matrix of the bend is
presented. The calculations are based on the modal approach. The stability
and precision of the algorithm is numerically and analytically analysed. The
algorithm enables precise numerical calculations of scattering across the bend.
The reflection is a purely quantum phenomenon and is discussed in more detail
over a larger energy interval. The behaviour of the reflection is explained
partially by a one-dimensional scattering model and heuristic calculations of
the scattering matrix for narrow bends. In the same spirit, we explain the
numerical results for the Wigner–Smith delay time in the bend.

PACS numbers: 02.30.Gp, 02.60.−x, 03.65.Nk, 05.60.Gg, 52.25.Tx, 84.40.Az

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The wave propagation in bent waveguides has a long and rich history of research that dates back
to Lord Rayleigh [1] and continues to the present days. Initially bends have been investigated
in the framework of the electromagnetic theory, but more recently also quantum-mechanical
aspects attracted a lot of attention. The bends are a popular subject of investigation because
they are typical elements incorporated into designs of waveguides. The computation of their
properties to sufficiently high precision seems to be a difficult problem in the regimes of high
energies and high curvatures even today.

We are discussing a bend as a scatterer of non-relativistic quantum waves on a two-
dimensional ideal straight waveguide as shown in figure 1. Such a structure is referred to
as an open billiard. The past research of quantum aspects of bends can be separated into
two branches. These are studies of bound states, their existence [2–4] and spectra [5] and
the scattering properties, which are both reviewed in [6]. In order to describe quantum
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Figure 1. A schematic picture of a finite bend of the inner radius r = q and the outer radius r = 1
on a straight waveguide of width a = 1 − q.

phenomena over our open billiard several approaches have been used in the past: Green
function approach [7], finite difference mesh calculations [8] and mode-matching techniques
(MMT) using natural modes i.e. eigenfunctions of the Laplacian in the bend [5, 9–13] and
other bases [14]. The work [5] is particularly interesting as it raises the question on how
to stabilize the calculations and gives a MMT method that is stable, but unfortunately a bit
ambiguous. The MMT based on natural modes is called the modal approach and is the main
topic of discussion in the present paper. The modal approach looks the most promising to deal
with bends because of its simplicity, power of interpretation and precision of results. But it
also hides some problems that we examine here in detail.

Let us introduce the modal approach in our open billiard composed of a bend, with the
inner radius r = q and the outer radius r = 1, and a straight waveguide of width a = 1 − q as
shown in figure 1. The area of the billiard, denoted by �, can be separated into three sections:
A—the left lead, B—the bend and C—the right lead. We are searching for the wavefunction
ψ(r ∈ �), which solves the stationary Schrödinger (Helmholtz) equation on � with Dirichlet
boundary conditions reading

−�ψ(r) = k2ψ(r), ψ |r∈∂� = 0, (1)

where E = k2 is the energy and k is the corresponding wavenumber. The Helmholtz
equation (1) is written in Cartesian coordinates r = (x, y) in the asymptotic regions A
and C as

−
(

∂2

∂x2
+

∂2

∂y2

)
ψ = k2ψ, ψ |y=0,1−q = 0, (2)

and in polar coordinates r = (r, φ) across the bend B as

−
(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
ψ = k2ψ, ψ |r=q,1 = 0. (3)

The modal approach suggests that we first solve Helmholtz equation (1) on each region of
the open billiard separately. Thereby we obtain partial solutions called mode functions,
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which are then used to describe the solution across the whole billiard. In the infinite straight
waveguide and in the bend the mode functions are given by the ansätze ψ ∝ u(y) exp(igx)

and ψ ∝ U(r) exp(iνφ), respectively. The ansätze in equations (2) and (3) give the following
equations for the mode functions:

d2u

dy2
+ (k2 − g2)u = 0, u|y=0,a = 0, y ∈ [0, a], (4)

d2U

dr2
+

1

r

dU

dr
+

(
k2 − ν2

r2

)
U = 0, U |r=q,1 = 0, r ∈ [q, 1], (5)

where a = 1 − q is the channel’s width and the scalars g,µ ∈ C are called mode numbers.
Equations (4) and (5) have a discrete set of solutions i.e. the mode functions and the
corresponding mode numbers, which we refer to as modes.

The modes in the straight waveguide and in the bend are denoted by pairs (gn, un(y)) and
(νp, Up(r)), respectively, where p, n ∈ N. The modes in the straight waveguide are explicitly
written as

k2 = g2
n +
(πn

a

)2
, un(x) =

√
2

a
sin
(π

a
nx
)

, (6)

whereas modes in the bend are more complicated. They are discussed in section 2, where we
also show that mode numbers are either real or imaginary. The mode functions un(y) and
Up(r) are then used in the bases of functions in which we expand waves over parts of the
waveguide. The basis in the straight waveguide is given by

e±
n (r) = un(y)

exp(±ignx)√
gn

, (7)

and in the bend by

f ±
p (r) = Up(r)

exp(±iνpφ)√
νp

, (8)

where the sign ± labels the two directions of phase (probability) flux propagation. We define
the square-root of a complex number z = |z| exp(iφ), φ ∈ [0, 2π) as

√
z = |z|1/2 exp(iφ/2).

The basis functions are called wave modes or modes of the Laplacian. We distinguish two
types of wave modes. The wave modes corresponding to real and imaginary mode numbers
are called open modes or travelling waves and closed modes or decaying (evanescent) waves,
respectively. The wavefunction ψ(r) (1) in the entire open billiard region � is expressed in
terms of the wave modes as

ψ(r) =
∑

n

a+
ne+

n(r) + a−
n e−

n (r), r ∈ �A, (9)

ψ(r) =
∑

p

λ+
pf +

p (r) + λ−
p f −

p (r), r ∈ �B, (10)

ψ(r) =
∑

n

b+
ne

+
n(r) + b−

n e−
n (r), r ∈ �C, (11)

where �A,B,C are regions corresponding to sections A, B and C, respectively. The expansion
coefficients a±

n , λ±
p and b±

n are determined by the condition that the wavefunction ψ(�r) is
smooth everywhere in �, in particular on the boundaries between different regions �A,B,C .
The solution of the presented problem will be discussed in section 3.



6352 M Horvat and T Prosen

This paper is organized as follows. In section 2, we present a detailed study of the mode
structure in the bend, which is closely related to the work of Cochran [15–17]. In comparison
to the work of others, ours is directed more towards the application of the mode structure
to scattering calculations. In addition, we write explicit formulae for the mode functions in
the bend, where we give special attention to the closed modes. In section 3, we outline a
numerically stable MMT for calculation of the scattering matrix [18] of a single bend. The
section 3 is concluded with the presentation of numerical results obtained by our method and
compared to analytic estimates of the quantum transport properties of the bend. By considering
the analogy between the quantum theory and EM theory we can connect our work to the EM
wave propagation of longitudinal magnetic waves [9].

2. The cross-product of Bessel functions

In this section, we analyse the properties of the mode numbers and the corresponding mode
functions for a given wavenumber k and inner radius q. The mode functions in the bend Up(r)

are proportional to well-known cross-products of Bessel functions [15] of the first kind, Jν ,
and Bessel functions of the second kind, Yν , [19] written as

Zν(k, r) = Jν(kr)Yν(k) − Yν(kr)Jν(k), (12)

or

Zν,k(r) = J−ν(kr)Jν(k) − Jν(kr)J−ν(k)

sin(νπ)
, ν /∈ Z, (13)

where the allowed values of mode numbers ν are determined by the Dirichlet boundary
conditions Zν,k(q) = 0. In equation (13) we have used the relation Yν(z) = (Jν(z) cos(νπ) −
J−ν(z))/ sin(νπ) valid for orders ν /∈ Z. The understanding of the mode structure in the bend
is essential for calculations of the scattering over our open billiard in the modal approach.

2.1. The properties of mode numbers

The set of mode numbers at a given wavenumber k ∈ R, k > 0 and inner radius q ∈ (0, 1) is
denoted byMk,q = {ν ∈ C : Zν,k(q) = 0}. The functions Zν,k(r) are even Z−ν,k(r) = Zν,k(r)

and analytic in the order ν [16]. These properties yield the following symmetry of the set of
mode numbers:

Mk,q = −Mk,q , M∗
k,q = Mk,q . (14)

In addition we conclude that mode numbers are either purely real or purely imaginary

Mk,q ⊂ R ∪ iR. (15)

The number of real modes is finite, whereas the number of imaginary modes is infinite at a
finite wavenumber k. The proof of the later is given in appendix A. The properties (14) and
(15) enable a decomposition of Mk,q into two disjoint subsets of mode numbers laying on the
positive Mk,q,+ and the negative Mk,q,− real and imaginary axes:

Mk,q,+ = {ν ∈ Mk,q : Re ν � 0 or Im ν � 0}, (16)

Mk,q,− = {ν ∈ Mk,q : Re ν < 0 or Im ν < 0} ⊆ −Mk,q,+. (17)

It easy to see that Mk,q = Mk,q,+ ∪ Mk,q,−. We call Re{Mk,q,+} and Im{Mk,q,+} the set
of real modes and imaginary modes, respectively. The number of real modes in the bend
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Nb = card Re{Mk,q,+} is equal or one more than the number of real modes in the straight
waveguide Ns = 	ka/π
:

0 � Nb − Ns � 1. (18)

where 	x
 denotes the largest integer smaller than x. Taking into account the analyticity of
Zν,k(r) in the order ν and in the wavenumber k [16] we find that Nb can be computed in the
semi-classical limit, for q �= 0, as

Nb =
⌊

ka

π
+

a

8πqk
+ O(k−2)

⌋
, (19)

and Ns is asymptotically, as k → ∞, close to Nb. Expressions (18) and (19) are explained in
appendix B. The asymptotic form of Zν,k(r) in the order parameter [20] reads as

Zν,k(r) = 1

πν
[rνO(1) − r−νO(1)], |ν| � 1. (20)

From equation (20) we learn that Zν,k(q) diverges exponentially with increasing order
parameter on the real axis as O(q−|ν|) and oscillates along the imaginary axis. This bounds
real mode numbers Re{Mk,r,+} from above and indicates that there is an infinite number of
almost periodic imaginary mode numbers.

The mode numbers ν ∈ Mk,r and consequently the mode functions can be in general
obtained only numerically. We use different approximations of mode numbers to improve their
numerical computation. By using the Debye approximation of Bessel functions for imaginary
orders ν = iy (y ∈ R) valid for y2 + (qk)2 � 1 and the Dirichlet condition Zν,k(q) = 0 we
obtain the following relation:√

y2 + k2 −
√

y2 + (kq)2 + y log

[
q

y +
√

y2 + k2

y +
√

y2 + (kq)2

]
= πn, n ∈ N. (21)

The solution of equation (21) in variable y � k represents an asymptotic approximation of
imaginary mode numbers νn = iyn and is written as

yn = πn

|log q| − (ka)2

4πn
+ O(n−3), n � 1. (22)

The first term in equation (22) is already well known and can also be obtained from
equation (20), see [15]. The divergence of Zν,k(q) for ν → ∞ makes the finding of high real
mode numbers, especially at large k, extremely difficult. We stabilize the search by using an
analytic approximation of the highest real mode number νmax(k, q) = max{ν : Zν,k(q) = 0}
for q sufficiently far away from 0. This is achieved by using the asymptotic expansion of
Bessel functions [19] in the transitional regime yielding

νmax(k, q) = k − 3

√
k

2

[
a0 + a1 exp

(
−2

7
3 a

3
2

3
k

)]
+ O(k− 1

3 ), (23)

where

a1 = − Bi(−a0)

2Ai′(−a0)

.= 0.323 685, a0
.= 2.338 1074. (24)

The constant a0 is the negative first zero of the Airy function, Ai(−a0) = 0. The exact
implicit formula Zν,k(q) = 0 for mode numbers at given k and q �= 0 has an interesting simple
first-order approximation reading(

k

k0(n, q)

)2

−
(

ν log q

πn

)2

≈ 1, (25)
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Figure 2. Two different representations of mode numbers ν at the corresponding wavenumbers k
in the bend with q = 0.6. In (a) we plot k versus ν, where we separately discuss real and imaginary
mode numbers depicted on the right and left side of the abscissa, respectively, and in (b) we plot
k2 versus ν2. The dashed lines represent solutions of equation (26).

which is asymptotically exact in two independent limits: ν = fixed, k → ∞, and
k = fixed, |ν| → ∞. The relation (25) represents a useful approximation of mode numbers
and is to our knowledge a new uniform approximation of modes in a bend. The expression
k0(n, q) is the nth zero of Z0,k(q), which can be easily found numerically. In the limit of large
n, where we can use k0(n, q) ≈ πn/a, the relation (25) is simplified to

(ka)2 − (ν log q)2 ≈ (πn)2. (26)

The validity of this formula is illustrated in figure 2, where we compare mode numbers
obtained from the approximate relation (26) with the exacts ones. The highest real mode νmax

for small wavenumbers k < ν can be approximated using equation (25) as

νmax(k, q) ≈ π

|log q|

√(
k

k0(1, q)

)2

− 1. (27)

In practical applications, it is important that below the wavenumber klow(q) = k0(1, q) there
are no real modes. In wide bends with q ≈ 0, one can expand the cross-product of Bessel
functions around q = 0 and obtain the formula

klow(q) = b0 +
b1

|log q| + O(q2), (28)

where b0 is the smallest zero of the Bessel function J0(x), J0(b0) = 0, and

b0
.= 2.404 825 558, b1 = −πY0(b0)

2J ′
0(b0)

.= 1.542 889 74. (29)

In narrow bends, where a(= 1 − q) → 0, we can use standard stationary perturbation theory
[21], see equation (B.2) in appendix B, to approximate klow(q). By introducing the matrix
elements

Vnm = −1

2

∫ 1

0
dx

sin(πnx) sin(πmx)

(x + γ )2
, γ = q

1 − q
, (30)

we can express the lowest wavenumber as

klow(q) = π

a

[
1 +

1

π2
V11 +

1

π4

∑
l>1

|V1l|2
1 − l2

+ O(|V |3)
]1/2

. (31)
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Figure 3. Plots of Zνn,k(r) for first 12 mode-numbers νn ∈ Mk,q,+(ν2
n > ν2

n+1) calculated at the
wavenumber k = 78.5398 (Nb = 10) and inner radius q = 0.6.

Formula (31) has a simple first-order expansion in a = 1 − q

klow(q) = π

a
− a

8π
+ O(a2). (32)

From expression (32) we learn that the lowest wavenumber at which real modes exist increases
with increasing q and converges to π

a
.

2.2. Numerical evaluation of mode functions in a bend

The mode functions in the bend at a given wavenumber k and inner radius q are proportional
to cross-products of Bessel functions Zν,k(r) (12), where the order parameter ν takes values
from the set Mk,q . Because of the symmetry Z−ν,k(r) = Zν,k(r), we only consider mode
numbers from the set Mk,q,+ = {

νn : ν2
n > ν2

n+1, n ∈ N
}
, which are ordered by decreasing

square. To illustrate the basic properties of mode functions, we plot in figure 3 the functions
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Zν,k(r) for real and first few imaginary mode numbers for q = 0.6 and some low wavenumber
k. We see that the first mode function Zν1,k(r) has no zeroes on the interval r ∈ (q, 1) and each
consecutive mode function has one additional zero. In the following, we present formulae and
numerical recipes for stable calculation of mode functions, where we assume that the mode
numbers are given.

The Bessel functions for real orders are well implemented in the currently available
numerical libraries, i.e. SLATEC [22]. From the definitions of Bessel functions it is not
unexpected that we encounter problems at evaluating Zν,k for large wavenumbers k � 1 and
high real orders ν � 1. In order to overcome these problems we apply the stable forward
recursions in the order parameter [19] written as

pµ+1 = pµ−1 − 2µ(xqµ + yrµ), (33)

qµ+1 = (2µ(µ + 1)y2 − 1)rµ + 2µ(µ + 1)xyqµ − (µ + 1)ypµ−1 + µxpµ, (34)

rµ+1 = (2µ(µ + 1)x2 − 1)qµ + 2µ(µ + 1)xyrµ − (µ + 1)xpµ−1 + µypµ, (35)

where we write x = (kr)−1 and y = k−1 and define the following symbols:

pµ = Jµ(kr)Yµ(k) − Jµ(k)Yµ(kr), (36)

qµ = Jµ(kr)Y ′
µ(k) − J ′

µ(k)Yµ(kr), (37)

rµ = J ′
µ(kr)Yµ(k) − Jµ(k)Y ′

µ(kr). (38)

The initial conditions for the recursion, at low orders, are calculated using standard routines
and the expressions for the derivatives of Bessel functions by relation valid for any Cylindrical
function: C ′

ν = (Cν−1 − Cν+1)/ν. However, we encountered a problem at high wavenumbers
and low orders due to the lack of precision in SLATEC routines. Therefore in that regime we
use the Hankel approximation [19] to evaluate Zν,k

Zν,k(r) = 2

π
√

rk
[(AC + BD) sin(k(1 − r)) + (AD − BC) cos(k(1 − r))] , (39)

where we write A = Pν(kr), B = Qν(kr), C = Pν(k) and D = Qν(k), which are expressed
in terms of the asymptotic series:

Pν(z) = 1 − (µ − 1)(µ − 9)

2!(8z)2
+

(µ − 1)(µ − 9)(µ − 25)(µ − 49)

4!(8z)4
+ · · · (40)

and

Qν(z) = µ − 1

8z
− (µ − 1)(µ − 9)(µ − 25)

3!(8z)3
+ · · · , µ = 4ν2, (41)

which we sum up to lmax = 	ν/2
 + 1 terms. There is another difficulty occurring at high
wavenumbers, which cannot be corrected. The first few real modes νp ∈ Mk,q,+ scale linearly
with the wavenumber k and functions Zν,k(r) diverge with increasing order ν. Consequently,
the values Zν,k(q) are exponentially sensitive on the precision of the first few mode numbers
νp: ∣∣Zνp+δν,k

∣∣(q) ∼ q−|νp | sinh(|log q|δν). (42)

This problem cannot be solved completely, but only partially corrected by manually setting
the values of Zνp,k(r) to zero around the inner radius. This can be done without any real loss
of precision, because the mode functions are localized near to the outer radius. In practice
we calculate the left-hand side of equation (42) in a finite range arithmetic [−m,m] with the
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maximal number m (e.g. m ≈ 10308 in double precision). By considering that together with
the known property νmax ∼ k (23), we find that in practice our modal approach breaks down
above some wavenumber kbreak ∼ log m/|log q| and consequently bounding the number of
open modes in our numerical analysis below

No,break ∼ a

π

log m

|log q| , (43)

where we used the relation No ∼ ka/π valid for narrow bends and high wavenumbers.
The numerical evaluation of Zνp,k(r) at imaginary orders ν ∈ iR is almost unsupported

in currently available numerical libraries. Therefore, we have developed procedures for their
evaluation ourselves and give here a summary of our work. For each regime of order parameters
ν = iy and wavenumbers k, we use a different strategy to evaluate Ziy,k(r) in order to achieve
an optimal precision control and a CPU time consumption. The formula for the cross-products
of Bessel functions (12) takes for imaginary orders a simple form

Ziy,k(r) = 2

sinh(πy)
Im{Jiy(k)J ∗

iy(kr)}. (44)

At small wavenumbers k or more generally for k � y, we use the Taylor expansion of the
Bessel function [19] and rewrite equation (44) into

Ziy,k(r) = 2

πy
Im{r−iyuiy(k)u∗

iy(kr)}, (45)

where we use the series

uν(z) =
∞∑
l=0

(−1)l
(

z
2

)2l

l!(ν + 1, ν + l + 1)
, (x, y) = �(y)

�(x)
. (46)

The series (46) is summed up to the index lmax = 	
√

z2/ε + |ν|2/4
, where ε is the desired
accuracy of the expression.

At higher wavenumbers k and orders y � k we combine the backwards recursion valid
for Cylindrical functions

al−1(z) = 2(l + iy)

z
al(z) − al+1(z), (47)

with an appropriate normalization formula for al(z) [19] and thereby obtain an expression for
uiy(k) (45) given by

uiy(z) = a0(z)

[ ∞∑
l=0

(2l + z)(1 + z, l + z)

l!
a2l (z)

]−1

. (48)

The terms a2l in the series (48) are given with the recursion (47) started at the index
lmax = 2	(x + 1)/2
 with initial conditions almax = ε and almax+1 = 0, where the constant
ε is the smallest number supported by the CPU architecture and x is determined by the
equation:

|log ε| − 1 +
1

2
log(1 + y2) − y arctany = 1

2
x log(x2 + y2) − x

(
log

z

2
+ 1
)

− x arctan
y

x
.

(49)

The later equation (49) is meaningful only if the right side is positive, yielding that presented
approach with the iteration formula is valid only for orders y below some value scaling as
O(|log ε|). By increasing the wavenumber k further up and keeping orders small y � k we
can use the Hankel approximation (39) with the order parameter ν = iy. The asymptotic
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series (40) and (41) in expression (39) are summed at least up to lmax = 	z/2 +
√

2z2 − y2/2

terms. At large enough wavenumbers k and imaginary orders y > k we can make use of the
Debye approximation of Bessel functions [23] and write

Ziy(k, r) = 2

π

Im
{
G(α, ξ)G∗(β, ζ ) exp

(
i
[
ξ − ζ − y

(
arcsinh y

k
− arcsinh y

kr

)])}
(1 − exp(−2πy))

√
ξζ

, (50)

with substitutions

ξ =
√

y2 + k2, ζ =
√

y2 + (kr)2, α−1 = 1 +
k2

y2
, β−1 = 1 +

(kr)2

y2
. (51)

Expression G(x, y) in formula (50) is given in the form of an asymptotic series

G(x, y) =
∞∑

m=0

(−i)mvm(x)

ym
, (52)

where polynomials vm(t) are generated by the following recursion

vk+1(t) = 1

2
(1 − t)(kvk(t) + 2tv′

k(t)) +
1

16
t−

k+1
2

∫ t

0
(1 − 5τ)τ

k−1
2 vk(τ ) dτ. (53)

The first few vm(t) read as

v0(t) = 1, v1(t) = 1
8 − 5

24 t, v2(t) = 3
128 − 77

576 t + 385
3456 t2, . . . . (54)

Formulae (39), (45), (48) and (50) enable a stable high precision calculation of the mode
functions in the bend at imaginary mode numbers.

2.3. The overlap of mode functions in different geometries

The main ingredient in the modal description of the scattering are the overlap integrals of the
mode functions in the straight waveguide and in the bend. These overlap integrals ‘tell’ about
the compatibility of both scattering regions and are discussed in the following.

The cross products of Bessel functions with order parameter ν ∈ Mk,q,+ at given
wavenumber k and inner radius q form a set of functions

Zk,q = {Zν,k(r) : ν ∈ Mk,q,+, r ∈ [q, 1]}, (55)

which is complete in L2[q, 1] and orthogonal w.r.t. the weight function w(r) = r−1. The later
is derived in appendix A. The orthogonality relation for Zν,k ∈ Zk,q reads [24]∫ 1

q

dr w(r)Zν,k(r)Zµ,k(r) = δµ,ν

k

2ν

[
Zν+1,k(1)

∂Zν,k

∂ν
(1) − qZν+1,k(q)

∂Zν,k

∂ν
(q)

]
. (56)

The line separating the bend and the straight waveguide will be called the cross-section of our
open billiard. On the cross-section, we define two different scalar products denoted by (·, ·)
and 〈·, ·〉, and written as

(a, b) =
∫ 1

q

dr

r
a(r)b(r), 〈a, b〉 =

∫ a

0
dy a(y)b(y). (57)

Let us now introduce modes at some fixed wavenumber k and inner radius q for different
regions of the open billiard. In the bend, mode numbers νp and normalized mode functions
Up(r) read as

νp ∈ Mk,q,+, Up(r) = Zνp,k(r)√(
Zνp,k, Zνp,k

) , p ∈ N, (58)
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Figure 4. Density plots of the matrix elements log10 |Anp | (top-row) and log10 |Bnp | (bottom-row)
for q = 0.2 (left) and q = 0.9 (right) as indicated in the figure. The number of open modes is
No = 100 and the number of all considered modes is N = 300.

where we order the mode numbers so that ν2
p > ν2

p+1, and in the straight leads connected to
the bend we have mode numbers gn and mode functions un(x) defined by

gn =
√

k2 −
(πn

a

)2
, un(y) =

√
2

a
sin
(π

a
ny
)

, n ∈ N. (59)

The modes with real and imaginary mode numbers are called open and closed modes,
respectively. The number of open modes in some geometry is denoted by No. The overlap
integrals of mode functions are given by

Anp = 〈un,Up〉, Bnp = (un, Up), (60)

where we use the relation r = q + y between the coordinates. In figure 4, we show a density
plot of the matrix elements, in log scale, namely log |Anp| and log |Bnp|, at two values of inner
radii with the same number of open modes No in both geometries. We see that the matrices
Anp and Bnp have a similar form for all q and k. This is starting at small indices with a wide
area of high values of matrix elements that squeezes to almost a single intensified point at
n, p ≈ No again spreading in a triangular shape with increasing indices. The parameter q has
a strong influence on the shape of the area with high intensities in A and B. In the case of
small values of q in contrast to larger q, the area of high values in matrices A and B covers
almost the whole open–open block of indices and with crossing of the narrowing at n, p ≈ No

spreads faster with increasing indices. The shape of matrices A and B is similar therefore
in the following we only show results for the matrix Anp. We found numerically that the
area of high intensities in matrices A and B scales with the number of open modes No as
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Figure 5. Density plot of matrix elements log10 |Anp | at inner radius q = 0.6 and different number
of open modes No = 100, 200 and 400 as indicated in the figure.

Anp, Bnp ∼ F(n/No, p/No), where F is some a well-behaved function. We demonstrate this
by plotting the matrix elements |Anp| in relative indices n/No and p/No for different numbers
of open modes No shown in figure 5. In addition, we find numerical evidence that intensities
of matrix elements Anp and Bnp in the region of open modes and in the region of closed modes
scale differently with No

open modes: |Anp|, |Bnp| � 1√
No

Fmax

(
n

No
,

p

No

)
, (61)

closed modes: |Anp|, |Bnp| � 1

N2
o

Fmin

(
n

No
,

p

No

)
, (62)

where Fmax and Ftail are some well-behaved functions. Taking into account these
phenomenological findings enables a better precision control of scattering calculations. In

figure 6, we see that Fmax is an envelope function for maximal values of N
1
2

o |Anp| and that
Fmin can be chosen to fit the tails of N2

o |Anp|. We prove the scaling relation (62) by using an
asymptotic approximation of the mode function in the bend

Up(r) =
√

2

|log q| sin

(
πp

log q
log r

)
, p � 1, (63)

which yields the following asymptotic behaviour of matrix elements

Anp ≈ 6

π2

|log q| 5
2

(1 − q)
3
2

(q2(−1)p + (−1)n+1)np−3 + O(p−5) n = fixed, p → ∞, (64)

Anp ≈ 2

π2

(1 − q)
5
2

|log q| 3
2

(q−2(−1)p+1 + (−1)n)pn−3 + O(n−5) p = fixed � 1, n → ∞.

(65)

The off-diagonal diagonal elements Anp and Bnp decay algebraically with increasing index.
The pre-factor of the decay is decreasing with increasing q and is singular at q = 0. This
means that for large enough q it is possible to approximately express the open modes of the
bend solely in terms of open modes of the straight waveguide and vice versa, as indicated by
the relation (61).
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Figure 6. The cuts in the index space of matrix Anp at fixed p/No = 0.5 and different number of
open modes No = 50, 100, 200 and 400 at inner radius q = 0.6.

From the definition of matrix elements Anp and Bnp (60), and completeness of the mode
functions at given k and q, it follows that A and B are transition matrices between the sets of
mode functions in different regions,

un(x) =
∑
p∈N

BnpUp(r), Up(r) =
∑
n∈N

Anpun(x), (66)

yielding the relation

ABT = AT B = id. (67)

In practice, we work with finite sets of modes, where the identity (67) cannot hold exactly. In
figure 7, we plot ABT for different inner radii q and fixed No = 100. The mismatch from the
identity (67) on some sub-set of indices starting at the origin n = 1, or p = 1, increases with
decreasing inner radius q. This means that the numerical calculation of scattering for smaller
q should be less accurate at finite dimensions. The discrepancy between ABT and the identity
on (truncated) finite-dimensional spaces is strongly non-uniform in indices. Before going into
practical aspects of this problem, we examine the convergence of matrix elements (ABT )nm

to δnm with increasing number of all considered modes N = No + Nc at fixed No, where Nc

is the number of closed modes. An example of such convergence is shown in figure 8. The
convergence proceeds by the standard scenario, where the agreement between [ABT ]np and
δnp propagates block-wise from low to higher indices with increasing N. The propagation is
slow due to the triangular shaped area of high intensities in the closed–closed modes block
of A and B. The speed of propagation of accuracy to higher indices increases with increasing
inner radius q.

The SVD decompositions [25] of matrices A and B is useful for improving and stabilising
the scattering calculations and will be used in the next section. From definitions of transition
matrices (60) and completeness of mode functions we obtain

(AAT )nn′ = 〈un, run′ 〉, (AT A)pp′ = (Up, rUp′), (68)

(BBT )nn′ = 〈un, r
−1un′ 〉, (BT B)pp′ = (Up, r−1Up′), (69)

which we use to bound the image

‖Aa‖2

‖a‖2
∈ [q

1
2 , 1],

‖Ba‖2

‖a‖2
∈ [1, q− 1

2 ] for ‖a‖2 �= 0. (70)
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Figure 7. Density plot of matrix elements log10 |(ABT )nm − δnm| for q = 0.2, 0.6 and 0.9 (from
left to right). On the abscissa and ordinate we plot indices n and m, respectively. The number of
open modes is No = 100 and the total number of modes is 300.

Figure 8. Density plot of matrix elements log10 |(ABT )nm − δnm| for different numbers of closed
modes Nc = 1, 100 and 500, as indicated in the figure, at inner radius q = 0.2 and No = 100 open
modes. The labels on the abscissa and the ordinate are matrix indices n and m, respectively.

These results together with ABT = id can be used to determine the form of the SVD
decomposition

A = U�V T , B = U�−1V T , � = diag{σi ∈ [
√

q, 1]}i∈N, (71)

where U and V are orthogonal matrices. We show here an example of the SVD decomposition
of finite-dimensional matrices A and B at q = 0.2 and No = 100. In figure 9, we show
singular values and in figure 10 we show density plots of the corresponding matrices U and
V , where the inner indices are ordered by decreasing magnitude of singular values. We see
that the relative dimension of the space, which violates the bounds of singular values (70),
converges with increasing space dimension N = No +Nc, where Nc is the number of imaginary
modes. In the presented case q = 0.2 the relative dimension is around 20%. It is important
to see that vectors in V and U corresponding to singular values, which violate the bounds,
have nonzero components only at closed modes. We conclude that due to a finite-dimensional
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Figure 9. Singular values of matrices A (left) and B (right) for different number of closed modes
Nc = 100, 200, 300, 400 and 500 at q =0.2 and No = 100.

representation of matrices A and B we have deviations from the infinitely dimensional case
only at high laying decaying modes that span a space of almost fixed relative dimension for
some value of q.

3. The scattering across a bend

In this section, we solve the on-shell scattering of a non-relativistic particle across our open
billiard using the modal approach, initiated in the introduction. The scattering is discussed at
fixed wavenumber k and inner radius q. The control of the precision of scattering calculations
is studied in detail. In the second part of this section, we investigate some interesting physical
scattering properties of the bend.

3.1. The scattering matrix of a bend

The scattering matrix S [18] is a linear mapping between the incoming and outgoing
‘waves’ with respect to our scatterer. We reorganize the expansion coefficients of the
wavefunction over different regions (9), (10), (11) into the incoming contributions denoted as
vin = (

a+
1 , a+

2 , . . . , b−
1 , b−

2 , . . .
)

and outgoing contributions vout = (
a−

1 , a−
2 , . . . , b+

1 , b+
2 , . . .

)
.

Then the scattering matrix S can be defined as

Svin = vout. (72)

The S-matrix in our case has a simple symmetric block form

S =
[
R T

T R

]
, (73)

with R and T being the reflection and the transmission matrix, respectively. By reordering of
rows and columns in S so that the matrix elements concerning open (subscript o) and closed
(subscript c) modes are separated and grouped together we obtain the matrix S, reading

S → S =
[
Soo Soc

Sco Scc

]
. (74)

We find that blocks of matrixS (74) obey the generalized unitarity [26] defined by the following
relations
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respectively.

SooS†
oo = S†

ooSoo = id, (75)

iSooS†
co = Soc, (76)

iS†
ocSoo = Sco, (77)

iScoS†
co = iS†

ocSoc = Scc − S†
cc. (78)

Relations (75)–(78) result from the probability current conservation, which is also equivalent
to the condition ABT = id. Due to the time-reversal symmetry of the physical problem the
scattering matrices S and S are symmetric

ST = S, ST = S. (79)

The block symmetry of the scattering matrix (73) simplifies its calculation. We may consider
individual incoming waves e+

n represented by the following wavefunction ansatz

ψ(r) = e+
n(r) +

∑
m

e−
m(r)Rmn, r ∈ �A, (80)
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ψ(r) =
∑

p

f +
p (r)�+

pn + f −
p (r)�−

pn, r ∈ �B, (81)

ψ(r) =
∑
m

e+
m(r)Tmn, r ∈ �C. (82)

The continuity of ψ(r) and its normal derivative on the connecting cross-sections between
regions �A,B,C determines the matrix elements Rmn, Tmn and �±

pn and yields the following
system of matrix equations

id + R = M(�+ + �−), T = M(F�+ + F−1�−), (83)

id − R = N(�+ − �−), T = N(F�+ − F−1�−), (84)

M = G
1
2 AV − 1

2 , N = G− 1
2 BV

1
2 , (85)

which we write using diagonal matrices V = diag{νn}n∈N,G = diag{gn}n∈N and F =
exp(iV ), and transition matrices A and B (60). The elimination of matrices �± from
equations (83) and (84) yields the blocks of the scattering matrix S, reading

T = (C − FDC−1FD)−1F(C − DC−1D), (86)

R = (C − FDC−1FD)−1(FDC−1FC − D), (87)

that we express by using the following auxiliary matrices

C = M−1 + N−1 = V
1
2 BT G− 1

2 + V − 1
2 AT G

1
2 , (88)

D = M−1 − N−1 = V
1
2 BT G− 1

2 − V − 1
2 AT G

1
2 , (89)

where we take into account the relation ABT = id. The presented form of the matrix T (86)
and R (87) is chosen in order to increase its numerical stability i.e. minimizing the use of
inverses and avoiding direct computation of F−1.

3.2. Numerically stable scheme for scattering matrix calculation

A bend on a straight waveguide is a paradigmatic example for testing numerical schemes and
ideas on how to accurately calculate the scattering matrix. In particular, the high curvature
case q → 0 turns to be highly non-trivial. Here we give a simple and stable procedure to
obtain the scattering matrix with a clear precision control for practically all curvatures.

The scattering across a bend of angle β and inner radius q back to asymptotic region at
some wavenumber k is described by the scattering matrix S(β) (73), which is composed of
the reflection matrix R(β) (87) and the transmission matrix T (β) (86). In practice, we work
with finite-dimensional matrix approximations, denoted by

RN(β), TN(β) ∈ C
N×N, SN(β) ∈ C

2N×2N, AN,BN ∈ R
N×N, (90)

where N � No is the number of modes used in the asymptotic regions. The main objective is
to construct these finite-dimensional matrices RN(β) and TN(β) so that

(i) calculations are numerically stable and precise,
(ii) SN(β) satisfies the time reversal symmetry (79) and the generalized unitarity relation

(75)–(77),
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(iii) the sub-block of RN(β) and TN(β) of dimension N ′ ∈ (No, N ] is calculated with
controllable accuracy, where No = 	ka/π
 is the number of open modes in the asymptotic
region.

The recipe to achieve these assumptions may be separated into two parts. In the first
part, we cure the numerical instability caused by the maximal element r(β) = exp(βνN) in
FN(β), which are exponentially diverging with increasing N. This is achieved by separating
the bend into 2n0 identical subsections of angle β ′ = 2−n0β so that r(β ′)εnum ≈ 1, where εnum

is the numerical precision e.g. εnum = 2−52 in double precision floating point arithmetic. The
number n0 is calculated as

n0 = max

{
0, 1 +

⌊
log2

( |log εnum|
βνN

)⌋}
. (91)

The scattering matrix SN(β ′) of a small subsection of the bend can be calculated in a very
stable way and up to a high precision. By concatenating scattering matrices of subsections
together with the recursion

SN(2−m+1β) = SN(2−mβ) � SN(2−mβ). (92)

we obtain the scattering matrix of the whole bend SN(β). The symbol � denotes the operation
for concatenating scattering matrices associated with scatterers on the waveguide and is defined
in appendix C.

In the second part, we are discussing the problem that SN(β ′) diverges with increasing N,
which is due to violation of the identity ABT = id (67) for finite truncated transition matrices
AN and BN . We eliminate the problem by deforming AN and BN so that they are non-singular
and exactly fulfil the condition ANBT

N = id. We make the SVD decomposition of the truncated
matrix AN = UN�NV T

N , modify its singular values �N = diag{σi}Ni=1 to �̃N = diag{σ̃i}Ni=1
so that they fit in the bounds obtained for infinitely dimensional case (71)

σ̃i =
{
σi : σi ∈ [q

1
2 , 1]

σ ∗ : otherwise
, (93)

and again generate both matrices

ÃN = UN�̃NV T
N , B̃N = UN�̃−1

N V T
N . (94)

The same procedure can also be done using SVD decomposition of the matrix BN as a base
for generation of both deformed matrices ÃN and B̃N . The value of σ ∗ > 0 can be chosen
arbitrarily, but the most elegant choice is σ ∗ = 1. By using matrices ÃN and B̃N (94) instead
of AN and BN in SN(β ′) and consequently in SN(β) these become generalized unitary with a
well-behaved and physically precise limit N → ∞ at least on the sub-space of dimension N ′.
We first check this by discussing the precision of transition between the modes in the bend
and in the straight waveguide on the sub-space of dimension N ′ < N . The error of transition
from the asymptotic region (infinite waveguide) into the bend is quantified by

εs→b(N,N ′) = max
n,m∈L

∣∣∣∣∣∣〈un|
 N∑

p=1

|Up)(Up| − id

 |um〉
∣∣∣∣∣∣ = max

n,m∈L

∣∣∣∣∣∣
N∑

p=1

AnpBmp − δnm

∣∣∣∣∣∣ , (95)

and for transition in the opposite direction by

εb→s(N,N ′) = max
p,r∈L

|(Up|
[

N∑
n=1

|un〉〈un| − id

]
|Ur)| = max

p,r∈L

∣∣∣∣∣
N∑

n=1

AnrBnp − δpr

∣∣∣∣∣ , (96)

with L = {1, 2, . . . , N ′}. The introduced transition errors (95) and (96) measure the violation
of the identity ABT = id on the subspace N ′, when working with the finite number of modes N.
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Figure 11. The transition errors εs→b(No + Nc, N
′) (top) and εb→s(No + Nc, N

′) (bottom)
calculated on the sub-space of dimension N ′ = No + 10 versus the number of closed modes Nc for
No = 10, 100 (left, right).

It is expected and supported by our numerical studies that the errors vanish in the limit N → ∞
at fixed N ′ and other parameters. In figure 11, we show transition errors as a function of N
at a fixed N ′ for two values of No. The errors decrease with increasing Nc down to a certain
plateau, which is determined by the precision of mode functions. The most problematic in the
precision are the highest few open modes in the bend. A conservative estimate for the plateau
is around 10−8. The transition errors (95) and (96) increase with decreasing q indicating that
we need more modes to achieve equally small error as for higher q. We did not find any
analytic approximation for transition errors. Therefore we numerically estimate the minimal
dimension of the functional space Nt = Nc +No needed for transition errors to be smaller than
some ε, defined as

Nt(N
′, ε) = min{N : εs→b(N,N ′) < ε and εb→s(N,N ′) < ε}, (97)

where N ′ = N ′
c +No is the dimension of the observed sub-space. In our numerical analysis we

set ε ≈ 10−7. We check the convergence of RN(β) and TN(β) with increasing N on some fixed
sub-space of dimension N ′ < N . The matrices RN and TN are calculated using the method
of dividing the bend into sub-sections together with deforming the transition matrices. The
convergence is measured through the relative difference of matrices at subsequent changes of
the dimension N

εR(N,N ′) = ‖RN+1(β) − RN(β)‖N ′

‖RN(β)‖N ′
, εT(N,N ′) = ‖TN+1(β) − TN(β)‖N ′

‖TN(β)‖N ′
, (98)

where we introduce a matrix norm ‖A‖M = maxi,j∈[1,M] |Aij | on the sub-space of the
dimension M. Expressions (98) give upper bounds for the deviations of matrices from their
asymptotic forms

‖R∞(β) − RN(β)‖N ′ � C1(N
′)

∞∑
M=N+1

εR(M,N ′), (99)
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Figure 12. The measures of convergence εR,T(No + Nc, No + 10) (top, bottom) as functions of
Nc for No = 10, 100 (left, right) at various inner radii q as indicated in the figure. The bend is of
angle β = π .

‖T∞(β) − TN(β)‖N ′ � C2(N
′)

∞∑
M=N+1

εT(M,N ′), (100)

with expressions C1(N
′) = maxN�N ′ ‖RN(β)‖N ′ and C2(N

′) = maxN�N ′ ‖TN(β)‖N ′ , which
are of the order of magnitude 1. We have numerically studied quantities εR,T(N,N ′) as
functions of N at fixed N ′ and the results are shown in figure 12. In the case N ′ = No, we
are talking about open–open block of the scattering matrix, which is sometimes called the
semi-quantal approximation [27]. We see that εR and εT decrease with increasing total number
of modes N = No + Nc in a similar fashion as transition errors down to some plateau around
10−12. The plateau is almost equal to the machine precision, which is surprisingly better than
the transition errors.

The presented method for the calculation of the scattering matrix and its accuracy control
works well for all q > 0. Nevertheless, a treatment of high curvature cases q → 0 are difficult
as we need to consider a large number of closed modes to reach a sufficient precision of the
scattering matrix. However, this is feasible to achieve by our method in a stable and controlled
way.

3.3. Quantum transport across the bend

The scattering matrix of the open billiard describes the stationary quantum transport of a
particle over the bend. We discuss here the most important and obvious measures of the
transport, which are the reflection probability and the Wigner–Smith delay time. Since the
classical particle cannot scatter back [28] we are particularly interested in the reflection
probability as a genuine quantum (wave) property. This is a measure of quantum tunnelling
between the two classically invariant components of the phase space corresponding to right
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q = 0.2 q = 0.6

 0  0.05  0.1  0.15  0.2  0.25

Figure 13. Scattering of an incoming ray of Gaussian shape with unit probability flux at
wavenumber k, which supports 100 open modes, and for two inner radii q = 0.2, 0.6 (left,
right).

and left going waves. The scattering of an incoming Gaussian ray over the bend is illustrated
in figure 13. The ray follows the classical trajectories, but as it is of finite width, its parts are
scattered differently when hitting the curved wall. The parts of the ray travel different lengths
and interfere among themselves.

We are discussing the scattering over the bend at some fixed wavenumber k and inner
radius q. The scattering properties are contained in the transmission matrix T (86) and the
reflection matrix R (87). The wavefunction over the asymptotic region is described in N
modes, where N � No = 	ka/π
. We consider an incoming wave coming to the bend from
the left side written in the asymptotic region as

ψin(r) =
N∑

n=1

ane
+
n(r). (101)

By introducing a vector of complex coefficients a = {an}No
n=1 we can write the transmitted and

reflected probability flux, jT and jR respectively, in an elegant form

jR = a†�a, jT = a†�a, j0 = a†a = jR + jT, (102)

where we introduce matrices � and � calculated from open–open mode blocks of R and T:

� = R†
ooRoo, � = T †

ooToo, where � + � = id. (103)

The average transport properties are given by the first and the second moment of the probability
currents jR,T averaged over an ensemble of incoming states a. The ensemble represents states
(vectors a) uniformly distributed over the 2N-dimensional sphere of radius j0 [18, 29]. The
average probability currents are given by

R = 〈jR〉α
j0

= 1

No
tr{�}, T = 1 − R, (104)

and the standard deviations of probability currents (giving fluctuations within an ensemble)
are written as

σ 2
R = 〈(jR − 〈jR〉α)2〉α

j 2
0

= 1

No + 1

[
tr{�2}

No
− R2

]
= σ 2

T . (105)

In the following, we thus discuss the average reflection R and the dispersion of reflection σ 2
R.

An approximation of the transmission matrix T can be determined from the semi-classical
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Figure 14. The density plot of the scattering matrices log10 |(RN)nm| and log10 |(TN )nm| and the
classical analogue of the later log10 |(Tclass)nm| calculated at inner radius q = 0.6, wavenumber
k = 100.5 π

a
and with the total number of modes N = 150.

calculations, whereas for the reflection matrix R it cannot, as the reflection in the bend is a
purely quantum phenomenon. The gross structure of matrices R and T, similarly as of matrices
A and B, does not change significantly with increasing wavenumber k. In figure 14, we show
the density plot of matrices R and T with No = 100 open modes. The high probabilities in
the matrix T have a classical correspondence, which is revealed through the calculation of
the classical scattering matrix Tclass [30]. Both, the classical and the quantum transmission
matrices feature similar patterns, but due to the quantum interference, we cannot establish a
clear correspondence. In the matrix T, we have a large area of high values so we can expect
that transmission probability of individual modes should be high. It is important to note that
the area in the reflection matrix of high intensity is concentrated around the last open mode
with the index No.

At the so-called resonant wavenumbers km = π
a
m (m ∈ N) a new open mode appears in

the asymptotic region and causes a strong increase in the reflection matrix elements at open
modes with high indices. This is demonstrated in figure 15, where we show the scattering
matrices R and T around the highest open mode calculated calculated at k ≈ k100 and at
q = 0.6. The changes are centred around the index No and significantly influence the average
transport.

In order to clarify the contributions to the total reflection we plot in figure 16 the reflection
probability of individual modes �nn for wavenumbers near and far from the resonance. We
see that the highest open mode has the strongest reflection and the reflection probability
of ‘all’ modes increases at resonant wavenumbers k = kNo . In particular the reflection of
highest open mode is almost perfect �No,No ≈ 1. In the vicinity of the resonance, we
could effectively approximate the average reflection as R ≈ �No,No/No (see figure 17). The
resonant wavenumbers kNo are important markers for anomalously strong reflection. This is
illustrated in figure 17, where we plot the average reflection R as a function of the wavenumber
around k = k100. We see the average reflection R has a strong sharp maximum at resonant
wavenumbers and decreases in an irregular oscillating manner with increasing wavenumber
until crossing the next resonant wavenumber. The frequency of irregular oscillations increases
with increasing wavenumber. From numerical results we see that R decreases with increasing
q. In narrow channels a → 0 at large wavenumbers we showed with a perturbative approach
(see appendix D) that
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Figure 15. The density plots of the reflection matrix log10 |(RN)nm| and the transmission matrix
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Figure 16. The diagonal matrix elements �nn at wavenumbers k = r π
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as indicated in the figure,
and fixed inner radius q = 0.6. Note that No = 	r
.

R ∼ a2

No
, (106)

which is confirmed numerically. The resonant behaviour around the resonant wavenumber
can be partially explained by neglecting all open modes except that with the highest index No.
Such system can be treated as an independent 1d scatterer (d = 1) with the reflection and
transmission matrix elements reading

R1d = − sin
(
βνNo

)
sin
(
βνNo + iµ

) , T1d = sin(iµ)

sin
(
βνNo + iµ

) , (107)

with the phase shift
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(inset shows even a more very narrow region of the resonance).
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Figure 18. The average reflection R and the relative deviation of reflection σR over a larger interval
of wavenumbers k at q = 0.6.

µ = 2 arctanh (K) , K = gNoANo,No

νNoBNo,No

∈ [0, 1]. (108)

At k = kNo , the mode number gNo ∼ µNo and the phase shift µNo become zero yielding
a perfect reflection in a 1d scattering model, R1d = −1 and T1d = 0. This treatment is
meaningful, because the matrices A and B are approximately diagonal at (No, No) with an
algebraic decay of matrix elements when we move away from the diagonal. If the modes were
strictly independent we would have �No,No = ‖R1d‖2, but the algebraic tails in matrices A

and B make this solution to hold only as a rough approximation as can be seen in figure 17.
In figure 18, we study measures of reflection R and σR over a larger range of wavenumbers
k. From figure 18(a), we see that R strongly oscillates with peaks at resonant wavenumber
kn and its upper bound decreases proportionally to k−1, as predicted. The numerical results in
figure 18(b) indicate that σR < R and R ∼ σR as k goes to infinity. To get rid of oscillations
and get an overall average behaviour of R and σR we calculate their cumulative integrals
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Figure 19. The integral of the average reflection R and deviation σR over larger interval of
wavenumbers k of a bend with a radius q = 0.6 and an angle β = π . The inserted lines are
f1(k) = 0.011 03 + 0.010 22 log k and f2(k) = −0.015 53 + 0.006 924 log k.

with respect to the wavenumber. The results are shown in figure 19 and yield the following
dependence: ∫ k

k0

R dκ ∝
∫ k

k0

σR dκ = O(log(k)). (109)

This indicates together with previous conclusions that the reflection measures, averaged over
small wavenumber ranges, indeed scale as

R ∼ σR = O(k−1), k → ∞. (110)

It seems that this relation (110) is valid for an arbitrary inner radius q and represents a new
and very useful information for the study of waveguides and general billiards that include
bends.

Another insight into the scattering properties gives the Wigner–Smith delay time τws

[31, 32], which is the quantum analogue of the geometric length travelled by a wave. In
the semi-classical limit, where we could apply geometric optics, τws is equal to the average
geometric length of classical trajectories over the open billiard. By using the Hermitian variant
of the lifetime matrix

Q = S†
oo

dSoo

dik
, (111)

the Wigner–Smith delay time is defined as

τws = 1

2No
tr{Q} = 1

No
tr

{
R†

oo
dRoo

dik

}
+

1

No
tr

{
T †

oo
dToo

dik

}
, (112)

where we have used block symmetries of our matrix S (73). τws can be thought of as an
average delay time corresponding to particular modes, which are defined as

τn
ws = 1

No

No∑
m=1

Im
{[

R†
oo

]
nm

[
R′

oo

]
mn

+
[
T †

oo

]
nm

[
T ′

oo

]
mn

}
, (113)

with derivative defined as (•)′ = d/dk. Numerical results shown in figure 20 point to a similar
dependence of Wigner–Smith delay time τws on the wavenumber k as the average reflection
R, just the oscillations are smoothed out. The time τws strongly increases near the resonance
wavenumber k = kNo due to intense changes in the scattering matrices R and T in the area
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Figure 20. The Wigner–Smith delay time τws for the bend of angle β = π around the reflection
resonance at r = 11, 101 (left, right). The solid horizontal lines with the labels T0.2,0.6,0.9 represent
the classical delay times at q = 0.2, 0.6, 0.9, which are approximately given with the formula
Tq = 2.458 63 + 2.486 96q.

around the index of the newly open mode. Qualitatively we can explain the singular behaviour
by treating the highest open mode in the resonance regions within a 1d scattering model in
which the delay time is given by

τ 1d
ws = Im{T ∗

1dT
′

1d + R∗
1dR

′
1d} = β sinh(2µ)ν ′

p − sin(2βνp)µ′

cosh(2µ) − cos(2βνp)
. (114)

The first term in the numerator of equation (114) corresponds to the transmission and the
second term to the reflection. By slowly increasing the wavenumber across the region of the
resonance, we can note three different regimes: before, in the vicinity and after the resonant
wavenumber. Slightly before the resonance k < kNo , a new real mode appears in the bend
(see formula (B.5)) making the propagation across the bend very slow. From formula (114),
we learn that this results in a large transmission time and consequently in a large time delay
τ 1d

ws . In the instance of crossing the reflection resonance a new mode appears in the straight

waveguide, which causes a square-root singularity τ 1d
ws ∼ (

k − kNo

)− 1
2 for k > kNo and its

sign is determined by 2βνNo . This reflection term has a short-scale influence to the behaviour
of the time delay and can enhance or reduce its size. Obviously, this is a very non-classical
situation. By going further away from the resonance wavenumbers the reflection contribution
to the time delay is levelled by an increasing transmission term due to a very slow propagation
of the mode in the asymptotic region, which again increases the transition time. So we can
experience one or two peaks of the time delay in the vicinity of the reflection resonance. Away
from the reflection resonance the time delay drops even below the classical time. The latter
we assume is due to reflection phenomena which reduces the classically expected phase shift.
The presented 1d scattering model has only an instructive purpose and does not represent any
useful quantitative approximation, similarly as was the case in the discussion of the reflection.

4. Conclusions

We present mathematical, numerical and physical backgrounds of the non-relativistic 2D
scattering of a quantum particle on a circular bend connected to infinite straight waveguides.
We discuss mathematical properties and derive numerical recipes for accurate and reliable
calculation of the mode functions and the corresponding mode numbers in a bend. We take
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a special care of closed (evanescent) modes in the bend. The obtained modal structure and
its properties are incorporated in a robust and stable numerical scheme for computing the
scattering matrix with a controllable precision. Our numerical apparatus is applied to the
study of transport properties. We focus mainly on the reflection, which is a purely quantum
(wave) phenomenon since the back-reflection of classical rays is not possible. Our study
is particularly focused on the possibility of investigating the (semi-classical) regime of very
large wavenumbers. Some of the obtained physical properties of the scattering problem can
be explained analytically. In addition, we present results on the Wigner–Smith delay in the
bend. The obtained transport properties can be useful in discussing and predicting properties
of open billiards (or waveguides) composed of arbitrary combination of bends and straight
segments.
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Appendix A. The symmetry of mode numbers

We prove the symmetry (15), by changing the variable r = e−x and transforming the Bessel
equation (3) and the corresponding boundary condition into the equation

d2Z

dx2
+ (k2e−2x − ν2)Z = 0, Z|x=0,log q = 0, (A.1)

which can be interpreted as a one-dimensional quantum-mechanical eigenvalue problem, with
the Hamiltonian Ĥ and potential V ′:

ĤZ = −ν2Z, Ĥ = − d2

dx2
+ V ′(x), V ′(x) =

{−k2e−2x : x ∈ [0,− log q]
∞ : elsewhere.

(A.2)

Because the Hamiltonian Ĥ is a Hermitian operator, the eigenvalues are real −ν2 ∈ R yielding
ν ∈ R ∪ iR. From the form of the potential V ′(x), depicted in figure A1, we see that there are
only a finite number of real mode numbers ν2 > 0 and an infinite number of imaginary mode
numbers ν2 < 0. The independent solutions of equation (A.2) are orthogonal with respect to
the measure dx = r−1 dr and so the weight function between mode functions Up(r) in the
bend is w(r) = r−1.

Appendix B. The number of modes in the straight and the bent waveguide

We discuss the number of open modes Nb(k, q) = card Re{Mk,q,+} in the bend and its
deviation from the number of modes in the straight waveguide Ns = 	ka/π
. The mode
numbers in Mk,q,+ continuously slide with increasing k and fixed q from the imaginary to the
real axis by crossing the point ν = 0. This dynamics is depicted in figure 2. This means that
Nb(k, q) is equal to the number of zeros x of Z0,x(q) up to the value k

Nb(k, q) = card Re{Mk,q,+} = card{x � k : Z0,x(q) = 0}. (B.1)
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Figure A1. The analogue of the quantum potential in the eigenvalue equation for the mode
functions in the bend.

By using substitutions U = r− 1
2 ϕ and r = q + ax the mode problem in the bend (5) is in the

case ν = 0 transformed into a 1d stationary Schrödinger equation (γ = q/(1 − q))

−d2ϕ

dx2
+ V (x)ϕ = eϕ, V (x) = −[2(x + γ )]−2, x ∈ [0, 1], (B.2)

with the eigenenergy denoted by e = (ka)2. The discrete set of eigenenergies is ordered as
en+1 > en, n ∈ N. By setting V = 0 in expression (B.2) we obtain the mode problem for
appropriately rescaled straight waveguide. In the eigen-energies in this case se (πn)2, n ∈ N.
Then taking into account the (empirical) fact en � (πn)2 < en+1 we can conclude

0 � Nb(k, q) − Ns(k, q) � 1, ∀ q ∈ (0, 1). (B.3)

This means that at certain k and q we can have in the bend one open mode more, but not less
than in the straight waveguide. In the semi-classical limit k → ∞ the eigenenergies en can
be obtained using the Debye approximation valid for qk � 1. In this way we get a relation
between the eigenvalues e and its counting number Nb

2πNb = (4k2 + 1)
1
2 − (4(qk)2 + 1)

1
2 − arctan((4k2 + 1)−

1
2 ) + arctan((4(qk)2 + 1)−

1
2 ), (B.4)

which yields with asymptotic expansion in k the expression

Nb(k, q) = ka

π
+

a

8πkq
+

a(1 + q)

64π(qk)2
+ O(a(qk)−3). (B.5)

We see that Nb and Ns are close to each other for high wavenumber and not too small inner
radius q.

Appendix C. The method of concatenating scattering matrices

Here we outline a method to concatenate the scattering matrices [33] associated with scatterers
on sectioned waveguides. Let us assume to have two scatterers labelled by A and B and with
scattering matrices SA and SB, respectively.

SA,B =
[
rL

A,B tR
A,B

tL
A,B rR

A,B

]
∈ C

2N×2N . (C.1)

By combining both scatterers A and B in the order AB we build a ‘larger’ scatterer with the
scattering matrix S. The matrix S is calculated from matrices SA,B by a nonlinear operation
� : C

2N×2N × C
2N×2N → C

2N×2N defined as

S = SA � SB =
[
rL tR

tL rR

]
∈ C

2N×2N, (C.2)
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which explicitly reads

rL = rL
A + tR

ArL
BL−1tL

A, tL = tL
BL−1tL

A, (C.3)

rR = rR
A + tL

ArR
B L′−1

tR
A , tR = tR

B L′−1
tR
A , (C.4)

where we define L = 1 − rR
ArL

B and L′ = 1 − rL
BrR

A. Note that a bend on a straight waveguide
can be treated as a scatterer. By combining bends of angles γ ′ and δ′ with scattering matrices
S(γ ′) and S(δ′), respectively, we get a bend of angle γ ′+δ′ with the scattering matrix S(γ ′+δ′).
The latter matrix can be obtained from matrices S(γ ′) and S(δ′) by the formula

S(γ ′ + δ′) = S(γ ′) � S(δ′) = S(δ′) � S(γ ′). (C.5)

Appendix D. Perturbative calculation of the scattering matrix for narrow bent
waveguide

We present a semi-classical approximation, for k � 1, of a scattering matrix corresponding
to a single bend on a straight waveguide of width a, as one shown in figure 1. Here we are
discussing only narrow channels a � 1, where the influence of closed modes on the scattering
diminishes. Therefore closed modes are neglected in our calculations. We are working at
wavenumbers k, where in all regions of the open billiard the number of open modes is equal.
This enables us to write the reflection and the transmission matrix in the following simpler
form

R = −[C+ − iS+]−1(C− + iS−), T = 2[C+ − iS+]−1, (D.1)

where we use the diagonal matrices C = Re{F},S = Im{F} and G = diag{gn}No
n=1 to express

the introduced matrices

C± = G
1
2 ACBT G− 1

2 ± G− 1
2 BCAT G

1
2 , (D.2)

S± = G
1
2 ASAT G

1
2 ± G− 1

2 BSBT G− 1
2 . (D.3)

We proceed by rescaling the variables to dimensionless form by the following substitutions

y = aξ, r = q + aξ, κ = ak, hn = agn =
√

κ2 − (πn)2, νp = αvp,

(D.4)

with a new transverse coordinate ξ ∈ [0, 1], and geometric properties being described by the
parameter α = a/q � 1. The transition matrices are then expressed as

Anp = q
1
2 Qnp, Qnp =

∫ 1
0 dξ bn(ξ)φp(ξ)(1 + αξ)−

1
2√∫ 1

0 φp(ξ)2(1 + αξ)−2
, (D.5)

Bnp = q− 1
2 Pnp, Pnp =

∫ 1
0 dξ bn(ξ)φp(ξ)(1 + αξ)−

3
2√∫ 1

0 φp(ξ)2(1 + αξ)−2
, (D.6)

with bn(ξ) = √
2 sin(πnξ). The eigenpairs (vp, φp(ξ)) are defined by the following

differential equation and the boundary condition:

d2φp

dξ 2
+

(
κ2 − v2

p − α2

4

(1 + αξ)2

)
φp = 0, φp(0) = φp(1) = 0. (D.7)
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We can easily recognize that the solutions of equation (D.7) converge in the limit α → 0 to
vp = hp and φp(ξ) = bp(ξ). We assume that the solutions can be expanded in a power series
of variable α. The eigenpairs can then be obtained using the standard perturbation theory with
the perturbation parameter α. The rescaled mode numbers are written as

v2
p = h2

p

[
1 + α + α2

(
1

3
− 1

2(πp)2

)]
+ α2

(
1

4
+ O

(
h4

p

))
+ O(α3), (D.8)

and the rescaled mode functions read as

φp(ξ) =
∑

n

Vnpbn(ξ), Vnp = δnp + α
8nph2

p

π4(n2 − p2)3
δodd
n+p + O(α2), (D.9)

where we use the symbol δodd
n = (1: n is odd; 0: otherwise). By plugging the mode functions

φp(ξ) (D.8) into transition matrices Q (D.5) and P (D.6) we obtain

Qnp = δnp + α

(
Fnp +

1

4
δnp

)
+ O(α2), (D.10)

Pnp = δnp − α

(
Fpn +

1

4
δnp

)
+ O(α2), (D.11)

Fnp = 8np

π2(n2 − p2)2

(
h2

p

π2(n2 − p2)
− 1

4

)
δodd
n+p. (D.12)

Note that the rescaled transition matrices Q and P satisfy the known identity QP T = PQT =
id. We insert the expressions for Q (D.10) and P (D.11) back into S± (D.3) and C± (D.2) and
write the reflection and the transmission matrix as

R = −α

2
F
[
H

1
2 ([F,C] + i(FS)s)H− 1

2 + H− 1
2 ([FT ,C] + i(F T S)s)H

1
2
]

+ O(α2), (D.13)

T = F − α

2

(
H

1
2 [F, F ]H− 1

2 + H− 1
2 [F,F]H

1
2
)

+ O(α2), (D.14)

where we have introduced the symbol (A)s = A + AT and the diagonal matrix H =
diag{hn}No

n=1. The approximations of the reflection matrix R (D.13) and the transmission
matrix T (D.14) are valid far away from the resonant condition ak = πn, because we assumed
that |gm| > α for all m � No. We conclude that the strength of reflection scales as R ∼ α2

and that narrow channels can be treated as perturbed straight waveguides.

References

[1] Strutt J W 1897 On the passage of electric waves through tubes or the vibrations of dielectric cylinders Phil.
Mag. (Ser. 5) 53 125–32

[2] Jensen H and Koppe H 1971 Quantum mechanics with constraints Ann. Phys. 63 586–91
[3] Exner P and Seba P 1989 Bound states in curved quantum waveguides J. Math. Phys. 30 2574–80
[4] Exner P 1993 Bound states in quantum waveguides of slowly decaying curvature J. Math. Phys. 34 23–8
[5] Lin K and Jaffe R L 1996 Bound states and threshold resonances in quantum wires with circular bends Phys.

Rev. B 54 5750–62
[6] Londergan J T and Carini J Pand Murdock D P 1999 Binding and Scattering in Two-Dimensional Systems:

Application to Quantum Wires, Waveguides and Photonic Crystals (Lecture Notes in Physics vol 60) (Berlin:
Springer)

[7] Spivack M, Ogilvy J and Sillence C 2002 Electromagnetic propagation in the curved two-dimensional waveguide
Waves Random Media 12 47–62

[8] Lent C S 1990 Transmission through a bend in an electron waveguide Appl. Phys. Lett. 56 2554–6

http://dx.doi.org/10.1088/0959-7174/12/1/304
http://dx.doi.org/10.1063/1.102885


The bends on a quantum waveguide and cross-products of Bessel functions 6379

[9] Cochran J A and Pecina R G 1966 Mode propagation in continuously curved waveguides Radio Sci. 1 679–96
[10] Accation L and Bertin G 1990 Modal analysis of curved waveguides Proc. 20th Eur. Microwave Conf. (Budapest,

Sep. 1990)
[11] Sols F and Macucci M 1990 Circular bends in electron waveguides Phys. Rev. B 41 11887–91
[12] Sprung D W L and Wu H 1992 Understanding quantum wires with circular bends J. Appl. Phys. 71 515–7
[13] Rashid M A and Kodama M 2002 Analysis of propagation properties in junctions between straight and bend

waveguides using cylindrical functions of complex orders Proc. ITC-CSCC-2002 Conf. (Phuket, Thailand,
July 2002)

[14] Amari S and J B 2000 Modelling of propagation and scattering in waveguide bends Proc. 30th European
Microwave Conf. vol 2 (Paris, France, Oct. 2000) pp 353–6

[15] Cochran J A 1964 Remarks on the zeros of cross-product Bessel functions J. Soc. Ind. Appl. Math. 12 580–7
[16] Cochran J A 1966 The analyticity of cross-product Bessel function zeros Proc. Camb. Phil. Soc 62 215–56
[17] Cochran J A et al 1966 The asymptotic nature of zeros of cross-product Bessel function Q. J. Mech. Appl. Math.

62 511–22
[18] Newton R G 2002 Scattering Theory of Waves and Particles (Mineola, NY: Dover)
[19] Olver F W J 1972 Bessel functions of integer order Handbook of Mathematical Functions 10th edn,

ed M Abramowitz and I A Stegun (New York: Dover) pp 355–89
[20] Olver F W J 1962 Tables for Bessel functions of moderate or large orders Mathematical Tables vol 6 (London,

UK: Her Majesty’s Stationary office)
[21] Morse P M and Feshbach H 1953 Methods of Theoretical Physics vol 1 (New York: McGraw-Hill)
[22] Fong K W, Jefferson T H, Suyehiro T and Walton L 1993 SLATEC common mathematical library, version 4.1
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